
Early versions of SILOON were targeted for use with the
POOMA (Parallel Object-Oriented Methods and
Applications) framework, the Visualization Interconnection
Framework (VIF), and PAWS (Parallel Application WorkSpace).

How to Use SILOON

There are five essential steps to using SILOON. The
following example assumes that there is a C++ source file,
save_the_world.cpp, which includes the necessary header
files defining the public interface exposed by SILOON.

Create and initialize the SILOON save_the_world
project directories for use with Python.

siloon-init save_the_world --python

Parse user code and create the program interface database.

siloon-parse save_the_world.cpp

Generate scripting interfaces.

siloon-gen save_the_world.pdb

Compile and link.

make

Run interactively.

python

SILOON (Scripting Interface Languages for Object-Oriented
Numerics) gives users the ability to rapidly prototype their
scientific codes in a simple yet elegant fashion using the
popular scripting languages Python and Perl. While
programming in these flexible and dynamic languages,
SILOON users maintain the capability of accessing the full
power and complexity of powerful FORTRAN and C++
libraries executed on high-performance parallel computers.

Overview of How SILOON Works

The SILOON toolkit parses source code from existing
object-oriented numerical class libraries and extracts
information regarding the interfaces to functions and class
methods. This information is then used to generate glue and
skeleton code, which when compiled, provides the run-time
support for linking user scripts with back-end computational
engines.

The parsing stage of SILOON is accomplished using
Program Database Toolkit (PDT). PDT analyzes application
source code and then makes this information available
through a callable interface.

Because SILOON was designed within a client/server
model, users can easily develop distributed applications. For
example, a Perl scripting client may connect to an
application running on a remote computational server,
query the application about its current state, and then pipe
data to a visualization tool. After examining the visual
information, a user may wish to adjust run-time parameters
in the application before continuing the computation.

Because SILOON (via PDT) uses a commercial ANSI-
compliant parser (from the Edison Design Group), one of its
unique features is its ability to handle many of the
complexities of C++ correctly. These include

•templated classes and functions,
•virtual and static member functions,
•constructors and destructors,
•overloaded operators and functions,
•default function arguments,
• references
•enumerations,
•typedefs, and
•the Standard Template Library (STL).

In addition, because Python and Perl provide automatic
garbage collection, SILOON adds this feature to the
capabilities of C++.

Templated Class

C++ class definition:

template <class T> class TClass {
private: T value;
public: TClass(T i) { value = i; }
public: T getValue() { return value; }

};

Python object creation and member function call:

tClass = TClass_float_(1.0)
value = tClass.getValue()

Perl object creation and member function call:

$tClass = TClass_float_->new(1.0);
$value = $tClass->getValue();

Name Mangling

The example above shows the instantiation of a templated
object of type TClass<float>. Since neither Python nor Perl
support angle bracket notation ("<>"), a name mangling
scheme has been chosen to handle these cases. The default
mangling of TClass<float> is TClass_float_ as seen above. As
name mangling can often be ugly and obtrusive, default
names can be overridden via a file which provides a
mapping between mangled names and function prototypes.

Suppose a user wanted to use the name TClassFloat for the
TClass<float> constructor, rather than TClass_float_. One
only need edit the prototypes file (initially generated
automatically) and replace the default name "TClass_float_"
in the first column with "TClassFloat" as shown below:

"TClassFloat" "TClass<float> &
TClass<float>::TClass<float>(float)"

Names for overloaded functions may be specified in a
similar manner.

Code Examples

A series of examples are provided. In each example, the
C++ source code is provided along with the Perl and
Python calls.

Function Call

C++ function definition:

float temperature(int i, int j) { return 3.0; }

Python call:

T = temperature(0, 0)

Perl call:

$T = temperature(0, 0);

Member Function Invocation

C++ class definition:

class IntegerClass {
private: int value;
public: IntegerClass(int i) { value = i; }
public: int getValue() { return value; }

};

Python object creation and member function call:

iClass = IntegerClass(2)
value = iClass.getValue()

Perl object creation and member function call:

$iClass = IntegerClass->new(2);
$value = $iClass->getValue();

More information about SILOON…
contact: Craig Rasmussen

e-mail: rasmussn@lanl.gov
web: www.acl.lanl.gov/siloon/

Get SILOON and other
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

LALP-99-200 November 1999
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by
the University of California for the United States Department of Energy under contract W-7405-ENG-
36. All company names, logos, and products mentioned herein are trademarks of their respective
companies. Reference to any specific company or product is not to be construed as an endorsement
of said company or product by The Regents of the University of California, the United States
Government, the U.S. Department of Energy, nor any of their employees.

Los
N A T I O N A L L A B O R A T O R Y

Alamos

More information about SILOON…
contact: Craig Rasmussen

e-mail: rasmussn@lanl.gov
web: www.acl.lanl.gov/siloon/

Get SILOON and other
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

